
NPS-OR-96-009

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Waiting Times When Service Times are Stable

Laws: Tamed and Wild

by

Donald P. Gaver

Patricia A. Jacobs

August 1996

Approved for public release; distribution is unlimited.

Prepared for: Naval Postgraduate School

Monterey, CA 93943-5000

FedDocs
D 208. 14/2
NPS-OR-96-009



I



MONTE^^TESCHOOL
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943-5000

Rear Admiral M. J. Evans Richard Elster

Superintendent Provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1 215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, IX 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1996

3. REPORT TYPE AND DATES COVERED

Technical

4. TITLE AND SUBTITLE

Waiting Times When Service Times are Stable Laws: Tamed and

Wild

6. AUTHOR(S)

Donald P. Gaver and Patricia A. Jacobs

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-OR-96-009

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

1 0. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Modern telecommunication systems must accommodate tasks or messages of extremely

variable time duration. Understanding of that variability, and appropriate stochastic models
are needed to describe the resulting queues or buffer contents. To this end, consider an M/G/l
queue with service times having a positive stable law distribution. Such service times are

extremely long (and short) tailed, and thus do not have finite first and second moments;
classical queue-theoretic results do not apply directly. Here we suggest two procedures for

initially taming stable laws, i.e. so that they possess finite mean and variance. We apply the

tamed laws to calculate certain familiar queuing properties, such as the transform of the

stationary distribution of the long-run virtual waiting time and mean thereof. We show that,

by norming or scaling traffic intensity, waiting times, and other measures of congestion, we
can obtain bona fide limiting distributions as the underlying service times become untamed, i.e.

return to the wild. Simulations support the theory.

14. SUBJECT TERMS

queuing, positive stable law service times, virtual waiting time,

limiting results

1 5. NUMBER OF PAGES

30
1 6. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

1 8. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

1 9. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18





Waiting Times When Service Times are Stable

Laws: Tamed and Wild

Donald P. Gaver

Patricia A. Jacobs

August 1996

To appear in Recent Contributions in Applied Probability and
Stochastic Process, (A book in honor of Julian Keilson).





WAITING TIMES WHEN SERVICE TIMES ARE STABLE LAWS:

TAMED AND WILD

Donald P. Gaver

Patricia A. Jacobs

Department of Operations Research

Naval Postgraduate School

Monterey, CA 93943

Abstract

Modern telecommunication systems must accommodate
tasks or messages of extremely variable time duration. Under-

standing of that variability, and appropriate stochastic models are

needed to describe the resulting queues or buffer contents. To this

end, consider an M/G/l queue with service times having a positive

stable law distribution. Such service times are extremely long (and

short) tailed, and thus do not have finite first and second moments;

classical queue-theoretic results do not apply directly. Here we
suggest two procedures for initially taming stable laws, i.e. so that

they possess finite mean and variance. We apply the tamed laws to

calculate certain familiar queuing properties, such as the transform

of the stationary distribution of the long-run virtual waiting time

and mean thereof. We show that, by norming or scaling traffic

intensity, waiting times, and other measures of congestion, we can

obtain bona fide limiting distributions as the underlying service

times become untamed, i.e. return to the wild. Simulations support

the theory.

1. The Problem Motivation

In various applications of service system or queuing theory there may arise a

need to consider service times, S, of great variability, i.e. that seem to possess

nearly Pareto tails:

P{S>x} = l-Fs (x) = 0(x-a
)

(1.1)



as x —» °°, where a is small enough so that no moments, E[Sk], k>l, are finite. In

this paper we examine certain aspects of such problems for M/G/l systems,

focusing on service times that are describable by positive stable laws. In view of

Theorem 1 on p. 448, Feller, II (1971), it is impossible to ignore the class of stable

law models to represent the behavior of (1.1); there is the additional fact that

stable laws approximate the distributions of sums of many long-tailed

independent random variables, e.g. the sum of a number of activities that

constitute service. But there is the problem that without finite first and second

moments at a minimum classical queue-theoretic results do not directly apply.

In this paper we consider some procedures for taming stable laws so that they

do possess the required properties, i.e. finite moments. We apply the tamed laws

to calculate certain familiar queuing properties, such as the virtual waiting time

in the system. Then we show that, by norming or scaling waiting times and other

measures of congestion, we can obtain bona-fide limiting distributions as the

underlying service times become untamed, or "return to the wild". For similar

work see Abate, et ah (1993, 1994) and probably more recent articles as well.

The authors are very much indebted to Walter Willinger for pointing out

many interesting references attesting to the appearance of long-tailed

distributions in modern communications systems. This in no way implicates

W. Willinger in our present machinations. We also gratefully acknowledge the

work by Ward Whitt and Joe Abate.

2. How to Tame a Wild Stable Law

There are several approaches that naturally suggest themselves for endowing

a stable-law distributed service time, S, of scale parameter, v, and order < a < 1,

with finite moments. Recall from Feller (1971) that the Laplace-Stieltjes transform

of Sis



(2.1)e-
sS

]
= exp[-(vsf

For the value a = 1 /2 the above possesses an explicit inverse, the name of which

is inverse Gaussian, a slight misnomer since the distribution is actually that of the

inverse square root of a Gaussian. Otherwise inverses are only expressible as

unintelligible infinite series or the equivalent.

(2.1) Assessing Shape Indirectly

As stated, (wild) stable laws possess no finite moments of order > 1.

Furthermore, there are no conveniently obtained explicit quantiles (e.g. median,

lower or upper quantiles, etc.) of the above, but there are simple substitutes

based on exponential distributions: ask for the test or killing exponential density,

of mean Kip), an observation from which, X, exceeds S with probability p. We get

from (2.1)

P{S<X} = exp[-(v/^))
a

= p (2.2)

or

*(p)=v[in(yp)r
Va

-

It is seen that the exponential median, /c(l/2), approaches ~ as a-) 0, and

approaches v/ln(2) as a —> 1, not surprisingly since for a= 1 the value of S = v

with probability 1. The value p = e
-1 = 0.368 is pivotal: for p = e-1 , kU~

J
= v for

all a; for p < e~l (1/p > e) K(p) increases with a T 1; for p > e-1 (1/p < e) K{p)

decreases as aT 1.

(2.2) I, Taming by Tilting: Initial Screening

Large deviation theory exploits an exponential tail by positive tilting towards

large values of interest so that the central limit theorem can be applied. Here it is

useful to apply negative tilting, see Abate et al, (1995) and (1994); they call this



exponential damping, while we speak of taming. Look at S-values that terminate

before being killed:

p{sK < t} = p{s < t\s <x}=
j'

o
fs(xy*!«dx/jjs(xy*/«dx (2.3)

which has transform

~sSK = exp -(v(s + l/^))
a
]/expf-(v/^ (2.4)

In a queuing context the above might arise naturally as a control strategy: k, the

mean of the service-killing distribution, is selected so as to keep the sizes of the

jobs selected under control. The subset of jobs that pass the exponential killing

screen are actually allowed into service, so if X is the arrival rate then the system

only sees X • e
-(V/K)

a

as arrival rate, and (unsealed) traffic intensity is

(2.5)

P(k) = XP{S < X}E[S\S < X]

= Ae<
v^ -a(v/K)

a-\

~XavaK l-a ->oo

as k —> 00. Only if XK^~a = 0(1) is there hope of achieving a steady-state

distribution.

(2.3) II, Taming by Truncation: On-Line Completion, Perhaps Partial

Suppose that each time an S-value is realized a killing (or interruption) value

X is independently realized. Total service is rendered if the service survives, i.e.

S < X; otherwise partial service X < S is rendered and a new job can be accepted

as soon as either event occurs. This setup can be called on-line real-time killed

service. For the server, it means that the effective service time is SK = min(S,X),

with transform



E e~
sS*

-(v(s+y*))
,

1 ~ e L?
}

1 Kse
+

1+KS

-(v(5+VK))
a

(2.6)

1 + KS 1 + KS

Now

{sK }
= Jl-e-W

J (2.7)

vV"a ^ -

as the mean killing time k-> <*>, so again only if Axr1-" = O(l) will there be an

opportunity for long-run queue stability.

3. Transforms of Long-Run Waiting Times

The formula for the Laplace-Stieltjes transform of the long-run or steady-state

distribution of M/G/l virtual waiting time, W, is well known to be

rsW
]

i-p

i-p
l-£ ,-sS

(3.1)

sE[S]

provided p = XE[S] < 1; otherwise no such distribution exists and the waiting

time tends to increase. Now suppose we contemplate an M/G/l system with

stable law service, tamed as in I or II above, i.e. with exponential, X, screening or

truncating exponentials, such that E[X] = k= l/fi. Then consider a sequence of

such, as k —> oo or jj. —> 0. We show how to adjust the arrival rate and normalize

the waiting time so as to obtain (transforms of) bona fide limiting distributions for

the normalized virtual waiting times.



First address the scaling of arrival rate X to control the traffic intensity p. From

(2.5) and (2.7) it is necessary that the actual arrival rate becomes small as the

taming parameter k becomes large if the resulting traffic intensity is to be

bounded. Therefore take the adjusted arrival rate to be A* = Axr1-a constant; the

constant is chosen so that the relevant traffic intensity is less than 1. For the

screening situation, J,

and for the truncation situation, II,

-(V/K)
a
ava X*ava

(pi=Ml-e*
\a\

~lva

(3.2)

(3.3)

For particular stable law input /-taming results in smaller system load than does

//-taming since a < 1. This is to be expected, as the latter admits some arrivals

that the former rejects outright.

Assuming the above, consider the normalized random variable W* = W/k=

Wfi. Replace s by 6/k=6ji to obtain

-ew 1-p

1-p
l-£ ,-fysV\

(3.4)

0juE[S]

where S is tamed and p* < 1.

(3.1) Screened Service, I

Substitute (2.4) and the expression E[S K] = e~WK> a(v/ic)
a~ l

v ~ avafi
a~l

into

(3.4). The result is a formula for every screening level k= 1/fi. Now take the limit

as ji -> 0:

-mj 1-p/

1-P/
{i+e)

a -\
(3.5)

ad

It is clear from construction and also from directly expanding that



v(e) =
(i+ef-i

ad
(3.6)

is completely monotone, hence the transform of an honest distribution. By-

differentiation or otherwise

WT
_ Pi (IzSL
"i- P; v 2

.

(3.7)

It is immediately seen that the limiting distribution of the scaled limiting random
if

variable WI
does not depend on v, the original stable law scale, except through

the traffic intensity p = pj < 1.

(3.2) Truncated Service, II

The effect of on-line service truncation is traced by substituting the transform

(2.6) into (3.4). Take the limit as p. -> 0, i.e. untame, to obtain

.-8Wr l-PII
A-a (3.8)

for pn < 1. This is recognized to be the transform of a geometric mixture of

gammas with scale 1 and shape parameter 1 - a. In this case

Wn
l-Pu

(3.9)

Once again the scaled limiting random variable has a distribution that depends

on the service time scale parameter, v, only through the traffic intensity. The fact

* * *

that pi =ctpu <pn and that a factor of 1/2 is present attests to the fact that

greater load is placed on system // than on system J. Of course greater service of

all incoming arrivals is furnished by // than by I.



4. The Number of Customers in the System

The formula for the generating function of the long-run or steady-state

distribution of the number of customers waiting or being served at an arbitrary

time in an M/G/l queue, N, is known to be

>A(l-z)Sl

H (l-p)(l-z)E

-A(l-z)S
(4.1)

-2

where S is a generic service time and p < 1; (cf. Gaver [1959]).

4.1 I, Taming by Tilting: Initial Screening

Differentiating the transform of S, (2.4), and evaluating the results at s =

results in

E[S] ~ avaKl-a
(4.2)

Var[S]~a(l-a)va K:
a^2-a

(4.3)

as k—> oo. Thus,

E[Nr] P/
2

(l-<*La

2(l -p\) ava

Substitute (2.4) into (4.1) for 2 = e~
s
i
K<X

K . (4.4)

,-snIk"
n P-WiW" 1 + Asr +&r"

—

>

exp{-(,[l +fs])%(^}-^

ML . N (4.5)

1-Pl
1+As -1

ctA s

-p/V(A*s)

as x
- —> co, where y/is defined in (3.6). Note that scaling for N is by k01

, while forW
it is by k. Otherwise (3.5) and (4.5) differ only by a factor A* in the denominator.

8



4.2 II, Taming by Truncation

Differentiation of the Laplace transform of the service time (2.6) yields

E[S] ~ v<*K^-a

E[S2 ] ~ 2(1 - a)v«K-2-«

(4.6)

(4.7)

as k -> oo. Thus,

E[Nn]~
Pu i

l - a)^a

(l-pn )
va '

Note that E[Ni] < E[Nu\ as expected.

Substituting (2.6) into (4.1) for z = e~
s 'K<X

, it follows that

fl-Ptf)

(4.8)

lim E
K—>°o

-sN/k"

1 -(vf^s + l

(l-pn)

a £
l+As

(l-pjff

-aV[As + l
ia-1

1-Piz
(l/A*)+s

x(l-a)

'

this is recognizable as the transform of a geometric mixture of gammas with scale

1
t* and shape parameter 1 - a, note its similarity to (3.8). Again the scaling by k®

is involved.

To date inversion of the transform appearing in the denominator of (3.5) and

(4.5) has eluded us. We pose the problem of its inversion, or characterization, to

Julian Keilson as a birthday gift. Happy Birthday!

5. Busy Periods

It has been seen that normalization by powers of k, the mean truncation time,

permits convergence of the traffic intensity parameter, p, and also the stationary



distribution of virtual waiting time. It is of interest to study the behavior of the

busy period when such a normalization is applied. Here convergence to nice

distributions does not occur.

Recall that if B is a busy period duration we can look at its generation in these

terms:

B = S + Bi+B2 + ...+BN{S ) (5.1)

where S is the first service time in the busy period, {Bj, i = 1, 2,...} is an iid

sequence of copies of busy periods starting with one arrival, and N(S) is the

number of arrivals in S. By conditional expectation,

E[B\S, N(S)] = S + E[B^ ]N(S) (5.2)

and so

E[B] =
E[S]

(5.3)

If we normalize so that X = 0(1 / K^~a) as in (3.2) and (3.3) then the traffic intensity

tends to a constant as k increases. It follows from (5.3) above that the expected

busy period is E[B], like E[S], of order /c
1_0:

. This gives hope that the actual

distribution of a scaled random busy period, B # = B//c1_a, might converge to

some recognizable honest form. However, such does not seem to occur. For

positive 9, (psiO) is the (smallest positive) root of

E[e~
9B

]
^ <pB (B) = u[6 + A(l - q>B (6)j\ (5.4)

where u{6) is the Laplace-Stieltjes transform of the service time. Hence, the

normalized busy period would satisfy, for Model I,

¥>I(0)
= exp ?£m«hT exp \v/K)° (5.5)

10



Differentiation once at 6 = shows that

JB*]--^; (5.6)
L J 1-ojPi

a similar result, again finite, holds for Model II. However, further analysis shows

that for Model I

Var B »: (5.7)

(1-pI)
3

i.e. is unbounded as K"—>©°, even though it has been normalized and the

normalized mean is finite. Similarly, for Model II

Var\B*\~^-
a>a

f (5.8)

which also becomes large like k® but remains larger than the previous variance

because of more permissive job entry. Recall that the traffic intensities in (5.7)

and (5.8) differ; refer to (3.2) and (3.3). In summary, it does not appear possible to

scale stable-law-service busy periods so as to achieve a non-zero mean and yet

get an honest limiting distribution with finite second moment. This is not

surprising in light of the fact that the virtual waiting time must be scaled to

obtain such a limit. Nevertheless some qualitative information may be deduced

about aspects of system behavior from the likes of (5.7) and (5.8).

6. Simulation Results

In this section we describe a simulation experiment and its results.

We consider an M/G/l queue; the service times have an inverse Gaussian

distribution that is tamed by truncation. The transform of the untamed

distribution is (2.1) with a =1/2 and v = 2. The tamed-by-truncation service time

is simulated by

11



S = min[4r /Y

where Z is a standard normal random variable and Y is an exponential random

variable having mean k.

The customer arrival rate is determined as follows. Set X* in (3.3) equal to 0.8.

Put the arrival rate of customers

( (ni^V\
X = X K i-e-^y

V

The waiting times for successive customers are obtained by recursion

WB+1 = max(W„ + Sn - An+V 0)

where Wn is the n th customer's waiting time in queue, Sn is the length of the n th

customer's service time, and An +\ is the time between the « th and (n + l)st arrival.

Start at W\ = 0. Clearly the above does not simulate virtual waiting times, but in

the case of Poisson arrivals the long-run limiting results are equivalent.

Graphical displays of the time series of simulated waiting times appear in

Figures la-le. One is struck by the large variability in the waiting times: upward

surges appear to occur occasionally, prevail for awhile, and then be interrupted

by periods of rather small but fluctuating values. Even averages of 15,000 in

single realizations are not especially stable: the five quoted range, after

normalization by k= 150, from 1.48 to 2.46.

Summaries of 5 replications of the simulation appear in Table 1. In each

replication the waiting times for 15,000 customers are simulated, and the waiting

times for all customers then averaged. These results are reported: the normed-by-

1 / k averages per replication, when averaged, turn out to equal 2, with standard

error of 0.17. This is in excellent agreement with the result of the theory (3.9),

which predicts a value of 2.

12



TABLE 1

LIMITING (KLARGE) SIMULATION
Mean Waiting Time (Scaled)

15000 Waiting Times per Replication

(TAMING II)

x*=150

1 2 3 4 5

Mean
of

Means

Standard

Error:

^Var/5

Mean 317.0 369.5 324.1 221.4 269.1 300.2 25.3

Mean

K
2.11 2.46 2.16 1.48 1.79 2.00 0.17

7. Discussion

Taming, as described above, may be viewed as a control strategy. It could be

of interest to ask about the fate of those jobs that are rejected (Model I), or

partially finished (Model II): these or their residues, respectively, could be

shunted to another server that must handle such overflowing extremely long

jobs; presumably these occur at a low enough rate to be accommodated because

they are filtered from the mainstream of arrivals. Several such stages could be

envisioned, and an attempt made to optimize with respect to the taming or

truncation parameters ks at stages s =1,2,.... In practice a deterministic

truncation time would be realistic, but the mathematics is less tractable.

Finally, we point out that Pareto-tailed distributions are not the most

pathologically long-tailed possible. A simple option is to mix one positive stable

law with another: replace the parameterization (2.1) by v = vf , where v* is itself

stable. The result is expressible as the Laplace transform of the mixing

distribution.

13
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